Search
  • 29 552 Sati
  • 14 486 Narudžbi
  • 2 059 Klijenata
  • 1 993 Recenzije
  • 147 Instruktora

Pripremamo studente za ispite na svim fakultetima

Online instrukcije iz matematike, fizike, kemije i informatike

eMatematika za osnovnu i srednju školu te sve fakultete - položite ispite s lakoćom!

Naruči instrukcije

Pripreme za maturu 2025.

Pripreme za maturu 2025.

Priprema za državnu maturu iz matematike - A i B razina

Odaberite grupne ili individualne pripreme po cijenama od 7,5 € do 15,0 €  po satu! PDV je uračunat.

Saznaj više

Osjeti stvaraju iluzije logaritmiranjem stvarnosti

Osjeti stvaraju iluzije logaritmiranjem stvarnosti

 

Pojam logaritma javlja se još u 16. stoljeću, a radovi koji su prethodili njegovu otkriću pojavljuju se još u 13. stoljeću. Onaj koji je započeo eru logaritama bio je urar John Napier, prvi spomen logaritama veže se uz njegovo ime te prvi naziv logaritma je Napierov logaritam, Napier također objavljiva prve logaritamske tablice. Njihov razvoj je tekao usporedo s potrebom za njihovom uporabom. Logaritmi se nisu zaustavili u Europi, dolaze čak i do Kine gdje ih prvi donose jezuiti. Kako su god bili primjenjivani u samoj matematici i drugim oblastima matematike tako su bili i matematičko oruđe u drugim znanostima.

Riječ logaritam je tvorbenica dvije grčke riječi logos (logos, odnosno ratio značenja um, razum) i aritmos (arithmos značenja  broj). Tvorac ovog naziva, kao i samog pojma logaritma je John Napier. U njegovim ranijim rukopisima mogao se susresti izraz "umjetni broj" (artifical number). Logaritmi koje je Napier izveo nisu imali bazu, odnosno bar mu to nije bila namjera, ali se s današnje točke gledišta može, dosta grubo, reći kako je ta osnova postojala i iznosila je otprilike 1/e.

Pod pojmom logaritamske funkcije (vidi sliku, radi se o funkciji logx) govorimo o vrijednost eksponencijalne funkcije f(x)=a^x te se postavlja se pitanje: Kolika je vrijednost potencije y= a^x za zadani broj x? Obrnuto ako je zadana vrijednost potencije y, prirodno se postavlja pitanje: koliki je eksponent x u jednakosti y= a^x? Ovo pitanje možemo smatrati okosnicom formiranja logaritama kakve poznajemo danas.

Kad govorimo o svojstvima operacija s logaritmima, važno je istaknuti da je zbroj logaritama istih baza, ekvivalentan umnošku njihovih vrijednosti unutar logaritma dane baze, kod oduzimanja se opetovano svodi na jedan integral samo su vrijednost prikazane kao kvocijent, neizostavno je svojstvo umnoška realnog broja sa samim logaritmom, gdje se taj realni broj može prikazati kao potencija dane vrijednost logaritma, naravno prisutna su i druga svojstva, ovih nekoliko se najčešće primjenjuje.

Njihova možda najvažnija primjena se ogleda u računalstvu, posebice kad govorimo o prirodnom logaritmu i broju e. Prirodni logaritam, ranije poznat kao hiperbolički logaritam, je logaritam za bazu e. Ponekad se koristi pojam i Napierovog logaritma, iako je izvorno značenje izraza malo drugačije. Jednostavno rečeno, prirodni logaritam broja x je stupanj povećanja broja e kako bi se dobio taj broj x. Uzmimo za primjer:  prirodni logaritam broja e je 1, jer je e¹ = e, dok je prirodni logaritam broja 1 broj 0, budući kako je e⁰ = 1. Prirodni logaritam može se definirati za sve pozitivne stvarne brojeve x kao područje ispod krivulje y = 1/t  u  granicama od 1 do x.

Funkcija prirodnog logaritma može se definirati i kao inverzna funkcija eksponencijalne funkcije, što vodi do identiteta:

e^lnx=x ako je x>0, onda ln e^x=x.

 Logaritamska funkcija je bijekcija iz skupa pozitivnih realnih brojeva u skup svih realnih brojeva. Preciznije, to je izomorfizam iz grupe pozitivnih realnih brojeva pod množenjem u grupu realnih brojeva pod zbrajanjem.. Predstavljeno kao funkcija: fx=lnx, pri čemu je ovom ekvivalentno log_e(x). Matematičari, statističari i neki inženjeri općenito razumiju ili log x i ln x  značenju log_e(x), npr., prirodni logaritam od x, i pišu "x " ako se traži logaritam baze 10 od x. Neki inženjeri, biolozi i neki drugi naučnici općenito pišu ln x ili ponekad x) kada koriste prirodni logaritam od x, a koriste logx kada koriste x  ili, u slučaju nekih informatičara, x  (iako se ovo piše kao logx). Kod najčešće korištenih programskih jezika, uključujući C, C++, MATLAB, Fortran i BASIC, "log" ili "LOG" označava prirodni logaritam. U ručnim kalkulatorima, prirodni logaritam je označen sa ln, a log predstavlja logaritam baze 10. U teoriji informacija i kriptografiji, logx označava log_2(x).

Značajno mjesto zauzimaju u fizici i kemiji, u oblastima kao što su zvuk, radioaktivnost, pH vrijednost i mnogi drugi, što znači da današnji svijet kakvim ga poznajemo ne bismo ga sigurno mogli vidjeti ovim očima da nije bilo logaritama.

I u ovom blogu je opisan još jedan djelić matematike, bez kojeg zasigurno ne bi bilo svijeta kakvim ga poznajemo danas, stoga kako bismo i dalje gledali svijet i njegov tehnološki napredak, učite matematiku! Ukoliko vam nešto nije jasno, slobodno nam se obratite za instrukcije.

 

Vaša eMatematika

Objavljeno: 10. Srpanj 2022

Ostali eMatematika članci